ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда.

Программа Гильберта.

Последний вопрос, который мы рассмотрим в этой главе, таков: должны ли мы так же верить в непротиворечивость ТТЧ, как мы верили в непротиворечивость исчисления высказываний? И если нет, то возможно ли укрепить нашу веру в ТТЧ, доказав, что она непротиворечива? Для начала можно утверждать, подобно тому, как Неосторожность утверждала об исчислении высказываний, что непротиворечивость ТТЧ «очевидна» — а именно, что каждое правило воплощает принцип логических рассуждений, в который мы верим безоговорочно; следовательно, ставить под вопрос непротиворечивость ТТЧ, это все равно, что сомневаться в собственном здравом уме. Этот аргумент все еще имеет некоторый вес, но уже не такой, как раньше. Дело в том, что теперь у нас слишком много правил вывода, и в какие-то из них могла вкрасться ошибка. Более того, откуда мы знаем, что наша мысленная модель неких абстрактных единиц под названием «натуральные числа» последовательна? Может быть, наши собственные мыслительные процессы, те неформальные процессы, которые мы пытались выразить в правилах формальной системы, сами по себе непоследовательны! Конечно, мы не ожидаем подобного подвоха. Тем не менее, можно представить, что чем сложнее объект нашей мысли, тем легче в нем запутаться; а натуральные числа — объект совсем не тривиальный. Так что в этом случае мы должны серьезнее воспринимать аргументы Осторожности, когда она требует доказательства непротиворечивости. Не то, чтобы мы действительно сомневались в непротиворечивости ТТЧ — но у нас все же есть малюсенькое сомнение, тень сомнения, и доказательство помогло бы эту тень рассеять.

Какой же метод доказательства нам бы хотелось использовать? Здесь мы снова сталкиваемся с проблемой порочного круга. Если мы будем использовать в доказательстве факта о системе те же инструменты, какие используются внутри самой системы, то чего мы таким образом добьемся? Если бы нам удалось убедиться в непротиворечивости ТТЧ, используя более слабую систему рассуждений, чем сама ТТЧ, мы избежали бы этого порочного круга! Подумайте о том, как протягивают тяжелый канат между двумя кораблями (по крайней мере, я читал об этом, когда был мальчишкой): сначала с одного из кораблей пускается стрела, которая перетаскивает через промежуток между кораблями веревку, затем при помощи этой веревки перетягивается канат. Если бы нам удалось использовать «легкую» систему, Чтобы показать непротиворечивость «тяжелой» системы, тогда мы могли бы считать, что действительно чего-то добились.

С первого взгляда может показаться, что у нас есть такая веревка. Наша цель — доказать, что в ТТЧ есть некоторое типографское свойство (непротиворечивость): в ней не встречаются одновременно теоремы формы x и ~x. Это похоже на доказательство того, что MU не является теоремой системы MIU. В обоих случаях мы имеем дело с утверждениями о типографских свойствах си стем, манипулирующих символами. Наше сравнение с веревкой основано на предположении о том, что факты теории чисел не нужны для доказательства некоего типографского свойства. Иными словами, если не использовать свойства целых чисел вообще — или использовать только несколько простейших свойств — мы можем доказать непротиворечивость ТТЧ, используя способы, более простые, чем наша внутренняя система рассуждений.

Именно на это надеялась школа математиков и логиков начала века; главой этой влиятельной школы был Давид Гильберт. Их целью было доказать непротиворечивость формализации теории чисел, подобных ТТЧ, используя весьма ограниченный набор логических принципов рассуждения, называемых финитными. Эти принципы были бы их «веревкой». Среди финитных методов — все методы исчисления высказываний, и некоторые методы численных рассуждений. Однако труды Гёделя показали, что любые усилия протащить через про пасть канат непротиворечивости ТТЧ, пользуясь веревкой финитных методов, обречены на провал. Гёдель показал, что для того, чтобы перетащить этот канат, невозможно пользоваться более легкой веревкой — просто нет настолько крепкой веревки, чтобы она выдержала такую нагрузку. Выражаясь менее метафорично, можно сказать: любая система, достаточно мощная, чтобы доказать непротиворечивость ТТЧ, по крайней мере так же мощна, как сама ТТЧ. Поэтому порочного круга здесь не избежать.