ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда.
ГЛАВА II: Содержание и форма в математике.
ЭТА ДВУХГОЛОСНАЯ ИНВЕНЦИЯ оказалась для моих героев вдохновляющей идеей. Так же, как Льюис Кэрролл позволил себе вольное обращение с Ахиллом и Черепахой Зенона, я позволил себе некоторые вольности с Ахиллом и Черепахой Льюиса Кэрролла. У Кэрролла одни и те же события повторяются снова и снова, каждый раз на более высоком уровне; это замечательная аналогия Баховского Естественно Растущего Канона. Если лишить диалог Кэрролла его блестящего остроумия, в нем останется глубокая философская проблема: подчиняются ли слова и мысли каким-либо формальным правилам? Это и есть основной вопрос, на который пытается ответить моя книга.
В этой и следующей главах мы рассмотрим несколько новых формальных систем; это поможет нам лучше понять саму идею формальной системы. Когда вы дочитаете эти две главы до конца, у вас должно сложиться неплохое представление о мощности формальных систем и о том, почему они представляют интерес для математиков и логиков.