ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда.

Теорема Тарского.

Теперь давайте рассмотрим результат Тарского. Тарский хотел выяснить, существует ли способ выразить в ТТЧ понятие теоретико-численной истины. То, что теоремность можно выразить (но не представить), мы уже видели; Тарский задался аналогичным вопросом в приложении к понятию истины. Точнее, он хотел определить, есть ли формула ТТЧ с единственной свободной переменной а, которая может быть интерпретирована как:

«Формула, чей Гёделев номер — а, выражает истину.».

Предположим, вместе с Тарским, что такая формула существует. Для краткости назовем ее ISTIN{a}. Теперь используем метод диагонализации и построем высказывание, утверждающее о себе самом, что оно ложно. Для этого мы точно повторим метод Гёделя, начиная с «дяди»:

Ea:<~ISTIN{a}ΛARITHMOQUINE{a'',a}>

Предположим, что Гёделев номер этого дяди — t. Арифмоквайнируем теперь самого дядю и получим формулу Тарского Т:

Ea:<~ISTIN{a}ΛARITHMOQUINE{SSS...SSS/a'',a}>

.                                          |______|  S повторяется t раз.

В интерпретации эта формула читается как:

«Арифмоквайнификацией t является ложное утверждение.».

Но, поскольку арифмоквайнификация t — это собственный Гёделев номер Т, формула Тарского Т в точности воспроизводит парадокс Эпименида внутри ТТЧ, говоря о себе «Я — ложь». Разумеется, это ведет к заключению, что это высказывание одновременно является и истинным и ложным (либо ни тем, ни другим). Возникает интересный вопрос: что плохого в воспроизведении парадокса Эпименида? Какие от этого могут быть последствия? В конце концов, этот парадокс уже существует в русском языке, и русский язык пока от этого не погиб.