ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда.

Суждения Хенкина и вирусы.

Эти противоположные типы автореференции в молекулярной биологии имеют свою параллель в математической логике. Мы уже обсуждали математическую аналогию фагов-самоубийц — я имею в виду строчки Геделева типа, утверждающие собственную невозможность внутри определенных формальных систем. Однако, возможна и параллель с настоящим фагом, утверждающим собственную воспроизводимость в определенной клетке — суждение, утверждающее собственную воспроизводимость в определенной формальной системе. Суждения подобного типа называются суждениями Хенкина, по имени математического логика Леона Хенкина. Они строятся примерно так же, как Геделевы суждения — единственная разница заключается в отсутствии отрицания Мы начинаем, разумеется, с «дяди»:

Еа:Еа' <ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{а,а'}Λ ARITHMOQUINE{а'',а'}.

И затем проделываем стандартный трюк. Предположим, что Геделев номер приведенного выше «дяди» — h. Арифмоквайнируя дядю, мы получаем суждение Хенкина:

Еа:Еа' <ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{а,а'}Λ

ARITHMOQUINE{SSS…SSS/a'',a'}>

.                      |____|

S повторяется h раз.

(Кстати, видите ли вы, в чем это суждение отличается от —G?) Я привожу его целиком, чтобы показать, что оно не дает «рецепта» собственной деривации; оно просто утверждает, что такая деривация существует. Вы можете спросить, верно ли это утверждение? Существуют ли деривации суждений Хенкина? Действительно ли эти суждения являются теоремами? Полезно вспомнить, что не обязательно верить политику, провозглашающему: «Я честный», — это может оказаться как правдой, так и враньем. Достойны ли суждения Хенкина большего доверия, чем политики?

Оказывается, что суждения Хенкина всегда истинны. Хотя пока нам не совсем понятно, почему это так, придется нам здесь принять этот интересный факт на веру.