ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда.

Представление знаний о мире.

Все это кажется убедительным, когда мы говорим о теории чисел, поскольку события там происходят в весьма ограниченном и чистом мире. Его границы, правила и обитатели определены четко, словно в хорошо построенном лабиринте. Такой мир намного менее сложен, чем открытый и неопределенный мир, в котором мы обитаем. Будучи поставлена, задача теории чисел полностью самодостаточна; задача реального мира, напротив, никогда не может быть с уверенностью изолирована от воздействия этого мира. Например, чтобы заменить перегоревшую лампочку, вам может понадобиться подвинуть помойное ведро; при этом вы можете нечаянно толкнуть стоящий поблизости столик и уронить на пол лежавшие на нем таблетки; после чего вам придется подмести пол, чтобы ваша собака их не съела… и так далее, и тому подобное. Таблетки, помойное ведро, собака и электрическая лампочка весьма мало соотносятся между собой, но здесь, благодаря некоему повседневному событию, они оказались в тесной связи. И невозможно предсказать, какие еще предметы оказались бы вовлечены в эти отношения, если бы события немного изменились. С другой стороны, решая задачу теории чисел, вам никогда не придется иметь дело с такими посторонними предметами, как таблетки, собаки, помойные ведра и щетки. (Разумеется, ваше интимное знакомство с означенными предметами может сослужить вам службу, когда вы пытаетесь представить себе задачу в форме геометрических фигур — но это совершенно другое дело.).

Реальный мир так сложен, что трудно вообразить себе маленький карманный калькулятор, который мог бы ответить на ваши вопросы путем нажатия кнопок с надписями «собака», «помойное ведро», «лампочка» и так далее. На самом деле, до сих пор очень трудно заставить даже большой и быстрый компьютер отвечать на вопросы о ситуациях, которые кажутся нам весьма простыми. Кажемся, что для того, чтобы компьютер «понял» задачу, необходимы много знаний и умение соотносить их друг с другом должным образом. Процессы мышления можно сравнить с деревом, чья видимая часть твердо стоит на земле, но, при этом зависит от невидимых корней, протягивающихся далеко под землей, поддерживающих и питающих дерево. В данном случае под корнями понимаются сложные процессы, происходящие на подсознательных уровнях — процессы, результаты которых управляют нашим мышлением, но о которых мы сами не подозреваем. Они работают как «пусковые механизмы символов», которые мы обсуждали в главах XI и XII.

Размышления о реальном мире очень отличаются от того, что происходит, когда мы перемножаем два числа — в последнем случае все находится, так сказать, над землей, открытое для обозрения. В арифметике высший уровень может быть выделен и промоделирован на аппаратуре различных типов: механические складывающие аппараты, карманные калькуляторы, компьютеры, человеческие мозги и так далее. Именно это и утверждает Тезис Чёрча-Тюринга. Но когда дело касается понимания реального мира, то трудно представить себе, что высший уровень возможно выделить и запрограммировать отдельно. Пусковые механизмы символов слишком сложны. Мысль должна «просочиться», профильтроваться сквозь многие уровни. В частности — и это возвращает нас к основным темам глав XI и XII — представление в мозгу реального мира, хотя и основанное до некоторой степени на изоморфизме, включает некоторые элементы, не имеющие никакого соответствия в окружающей нас действительности. Оно гораздо сложнее элементарных мысленных образов «собаки», «щетки» и так далее. Конечно, все эти символы существуют, но их внутренняя структура необыкновенно сложна и почти недоступна сознательному исследованию. Более того, стараться найти соответствие внутренней структуре какого бы то ни было символа в реальном мире было бы напрасным трудом.