ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда.

Два простых примера различия.

Процесс, при помощи которого одна первоначальная клетка воспроизводится снова и снова, порождая множество различных клеток со специальными функциями, можно сравнить с распространением некоего письма по цепочке, где каждый человек должен скопировать первоначальное послание, при этом добавив к нему нечто свое. Через некоторое время письма будут очень отличаться друг от друга.

Еще одним примером идеи дифференциации является простая компьютерная аналогия различающего авто-репа. Представьте себе коротенькую программу контролирующуюся при помощи переключателя с двумя позициями, А и В. Внутренний параметр программы — натуральное число N. Программа может работать в двух режимах А или В. Когда она работает в режиме А, она самовоспроизводится в соседнем районе компьютерной памяти — но при этом новый, «дочерний» параметр N возрастает на единицу. Работая в режиме В, программа не самовоспроизводится — вместо этого она вычисляет величину выражения:

(-1)/(2N+1).

И добавляет результат к накопленной общей сумме.

Предположим, что в начале в памяти имелась одна копия программы, N = 0, и программа находилась в режиме А. Результатом явится копия программы в соседнем районе памяти, N будет равняться 1. Повторив процесс, мы получим новую копию в соседнем районе памяти, с N = 2. И так далее, и тому подобное… Память при этом загружается большой программой. Когда память заполняется, процесс останавливается. Теперь мы можем считать, что память занята одной большой программой, составленной из множества похожих, но дифференцированных модулей — «клеток».

Теперь представьте, что мы переключаем эту большую программу на режим В. Что при этом получается? Первая «клетка» дает 1/2. Вторая «клетка» дает -1/3 и добавляет это к предыдущему результату. Третья «клетка» добавляет к общей сумме +1/5 …

В результате весь «организм» — большая программа — вычисляет сумму ряда:

1 -1/3 +1/5 -1/7 +1/9 -1/11 +1/13 -1/15 +…

Число членов этого ряда равно количеству «клеток», умещающихся в памяти. И поскольку этот ряд сходится (хотя и медленно), стремясь к π/4, его можно назвать «фенотипом», чья функция — вычисление величины знаменитой математической постоянной.